If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+80x-50=0
a = 1; b = 80; c = -50;
Δ = b2-4ac
Δ = 802-4·1·(-50)
Δ = 6600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6600}=\sqrt{100*66}=\sqrt{100}*\sqrt{66}=10\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{66}}{2*1}=\frac{-80-10\sqrt{66}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{66}}{2*1}=\frac{-80+10\sqrt{66}}{2} $
| 0=5x^2-3x+100 | | 1+0.1x=1.1^x | | 7k^2+14k=0 | | x=9+1.5x | | 5x-2x-16=0 | | 2x/(5x/60)=24 | | (5^x+1)(7^x)=3^2x+1 | | 43.02=x+(x*0.78) | | 43,02=x+(x•0,78) | | 43,02=x+(x•0.78) | | 3/2=6g-5 | | 43.02=x+(x•0.78) | | -26=22(4d-5) | | {(5x+5)×(2x+5)}-(5x×2x)=305 | | 6x+9=26x-91 | | ((t+4)/(t^2-4))((4t-8)/(2t+8))=0 | | (5x-7)/3x=2 | | 11/13=x/12 | | (24y-18/2y)+(5/y)=13 | | 0.12x+(0.5+x)/20=x/3+1.5 | | 6x+4-3x+3=37 | | 3(2x+30/13=2x-7 | | 4*3x-8)=25 | | 1/x+2+1/x-2=2 | | 6x+9=26x-84 | | 5^3x+1^5=2^3x-1^5 | | X/x+1+3/x-1=0 | | x×x+4x-5=3 | | y-4=256 | | 900/x=7.5 | | -28=-8w+6(w-4) | | 54000/x=360 |